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ABSTRACT

For temperature-programmed gas chromatography, it is shown that the first original, the second and
the third central moments of @ moving zone are additive along all parts of the component passing through
in a linear system. Trace expressions for zones moving along the column and expressions for the calcuiation
of the first three moments (retention time, peak variance and third central moment related to peak skew) of
peaks according to isothermal data are derived. Tt is also shown that the definition of local plate height and
related squations for peak variance in Lhe literature arce not correct. Reasonable definitions of local plate
height and related equations are then developed appropriately.

INTRODUCTION

The theory of temperature-programmed gas chromatography (TPGC) was
developed by several workers [1-5] and equations for the retention time and peak
variance were derived and optimization procedures developed. However, in the
literalure, Lrace expressions for components moving along the column length with time
have not been considered in detail. Also, the third central moment, which reflects the
skew of peaks, and higher order moments have not previously been studied.
Additionally, the definition ol local plate height and related equations for peak
variance in the literature [1,6-8] are not correet, as the actual peak variance in TPGC
could not be calculated using these equations with isothermal data.

In the present treatments, equations for the retention time and traces of
components moving along the column length are derived. Reasonable definitions of
local plate height and related equations for the calculations of peak variance in TPGC
are then developed.

In this paper, a new method. moment analysis, is developed for TPGC, in which
the retention time, peak variance and higher order moments are decalt with by
a common, general, strict and simple method. By using this method, equations for the
calculation of different order of moments, including retention time, peak variance and
third central moment. in TPGC using isothermal data are developed. Decompression
cffects of the carricr gas arc taken into account.
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RETENTION TIME AND TRACE

In this treatment, only systems which salisfy the following assumptions are
discussed: columns are homogeneous; columns, or more gencrally systems, are linear;
and carrier gas pressures at the column inlet and column outlet remain constant during
analysis.

Censidering a component, the position ol its zone cenlre al time ¢is z=z(¢) and
the velocity of the zone centre is

dzidt = Rv = vi(l+k) (1)

where k =k(1) is the capacity factor and v is the local velacity of the carrier gas.
Darcy’s Law is expressed as

v = —(KimdPidz (2)
where K and # are the permeabilily and viscosily, respectively, of the carrier gas and

Pisthe local pressure of the carrier gas. As the column is homogeneous. at any moment
there is no temperature gradient along the column length, and we can write

7y = Plpi - Pn"n - ﬁf‘ (3)
where P, and P, are the carrier gas pressure at column inlet and column outlet,
respectively and v, and v, are the corresponding carrier gas velocities. P is the distance
average of Poie.,

i

P = (| PdzyL = Pj (4)
4]
where
o3 (@2 =—D -
=, B 3
T )
and
¥ = Pir”Pn (6)

arc constants.
From egns. 2 and 3, we have

=2 - (PP - (yv)?

22 =1

|
1
.

]

L 3 -

and the time average of v with time 1s given by

1 o { F L
— vdt = — | dz = — (8)
fa Jn Iy ju iy
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where
L “Jot — (@ — Dzl L
to = [ dzjv = Jv * ( e dz = — 9
“u 0 v JVo
Noling thal ¥ in egn. 3 can be wrillen as
Vo= v, PP =, (10)

then ¥ is just the time average of v within the dead time 7. and it is only related to the
column temperature, i.¢.,

1_’ = L/l‘g (l 1)
On the other hand, the distance average of v along the column is

_ l L
v = Lf‘ vdz (12)

0
It can be derived that

25

T jlat1)

Combining eqns. 10 and 7 leads to

Vo= e (14)
ANt — (@ =1)z/L

This equation relates v (local value) and v at an appropriate column temperature.

Bycombiningeqns. [ and 14, theretlention time 7z in TPGC (in this text, subscripts
R and r denote TPGC and isathermal processes, respectively) is obtained by the
expression

'R d¢
)

Yoty (L+k) ' (1)

This is consistent with the equation derived by Harris and Habgood [3].
The procedure for the calculation of /g according to isothermal data can be
outlined as follows. Experimentally, the dead time can be written as

to(T) = (A'+ BT) (P Py) (16)
Recalling that P; and P, are constants, this reduces to

(T = Ay + BT (17
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The linear heating programme can be expressed as
T =T+ rt (18)

where Ty, and r are the initial temperature and the healing rate, respectively, [t is well
known that

Ink = Cy + Dy/T {19}

[f the constants Ag, Bg, Co and Dyabove are determined by regression to several
{morc than two) isathermal data, then from egqns. 17, 18, 19and 15, for any values of Ty
and r, the retention time 74 of each component with temperature programming can be
calculated immediately.

The trace expression in TPGC can be obtained by combiningegns. | and 14, i.e.,

o’ 1 , 22— 1 (" ¥ 3
{/L = — - — s | dr 20
@ 2 = 1 a“—l(a L LI+I( ) (20)
Eqn. 14 is then rewritten as

5 3 t = —1/3

vy at — 1 v
(r) = |2 — - dr 21
v(r) J.(% 2 _[Ol-t—k ) (21

Similarly to the calculation of g, the position of the zone centre and its
velacity (Rv) at any time r can be calculated by eqns. 20 and 21.

As a simple example, in Fig. | we give the trace for isothermal processes, The
trace expression is obtained according to eqn. 20 as

2/3

22 | {
(1)1 = - S 22
L= 5 1[se (2 1>,r] (22)

Asin Fig. 1, actual traces for isothermal processes always [all botween the two limiting
curves, Le.. the curve z/L=1/1, (z—1) and the curve z/L = 1—(1—1/i.)*7 (a—> ).

MOMENTS OF LINEAR SYSTEMS

It is well known that moments play an important role in chromatography [9-15],
as they are directly related to factors of practical importance, ¢.g., My, peak area; M,
peak average retention time (= 1,); M,, peak variance (= 1°); M5, peak asymmetry
{skew = M,/M,*?); M, peak flattening (excess = M,/M3 — 3); where M, denotes
the first original (absolule) moment and M, M3 and M, denote the second, third and
fourth central moment. respectively.

Busic relationships for moments
The properties of moments are generally discussed as follows [16-18]. First we
discuss the moments created by the column itself.
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Fig. . 'T'races of components (including air peak) along the column length for isothermal processes. Actual
traces alwavs fall between the two limiting curves (shaded area), i.e., curve 1, z/L = t/1, {(x—T1) and curve
2L = ==t )3 (e—u).

The whole column can be regarded as many successive short lengths, A/, A/;,
Aly, etc., and we consider the variation of the peak profiles along these column
intervals. Supposc individual responding functions of the column intcrvals arc
represented by £ (1), f2(2), f3(1), etc., respectively, that is, if a sharp [Dirac 6(r) function]
injection is performed at the inlet of intervals A (i=1.2,3....), the profile at the outlet
will be depicted by the corresponding function fi1).

If the 8(1) function sampling proceeds at the inlet of the whole column, the profile
at the outlet of length interval AZ will be gr), where g,(r) is the convolution of f1(7),
Ja(2), f5(1), ..., and fi(1). as the column is assumed to be linear. In the following, we use
A4.M,; and M ,; denoting the nth moment {#=1 for original moment, »n>1 for central
moment) corresponding to fi(f) and gy(1). respectively. that is,

ASAJU = j\jof;([)l‘dt (23)
0

AMy = jj‘ FIN(—AMPdr (=23 (24)
[}

M= ednidi (25)
0

My= | g Myydi  (n=23..) (26)
0
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In TPGC, f(2) is a complex function related to the temperature of the interval,
becausc the column temperature is varying during elution and diflerent parts of a zone
pass through the column interval at different moments in time, and hence at different
temperatures. However, in practice, the time interval is very short when a peak is
passing through a very short (infinitesimal) column length interval, provided that the
column efficicncy is not too low. For cxample, if the plate number N =
5.54 (rp/wy)” = 5.54 x 10%, ws = 1% 15, Assuming that column temperature increases
by 100 K during the retention time 1, the range of temperature variation for the peak
passing through an infinitesimal column length will be ca. 1 K. Therelore, Lo a good
approximation, we assume that, during the process of a peak moving through an
infinitesimal column length interval, the local temperature remains at a certain value
that is approximalely equal to the temperature of the zone centre passing through.
Hencee the column can be regarded as many successive length intervals in which each
remains at an isothermal temperature while the zone passes through. The time gradient
of temperature is then changed into the space gradient of temperature along the
column length.

For simplicity. we first consider two intervals, A1, and Al;. For a sharp injection
into the inlet of the column, i.e., the inlet of the length interval A7, the profile at the
outlet of Al; will be g,(/)=1(¢#). and the profile at the outlet of A, will be g,(1), where
£-(n is the convolution ol g,(¢) and /f5(2):

g = j g fLo(r—1dr 27N
0

Similarly, the profile at the outlet of A/; will be g4(7). which is the convolution of g2(r}
and £3(2), etc.
For the first length intcrval Af;,
A’fl] = Asﬂ/fl 1 (28)
M, = AM,, (n=2.3....) (29)

The first original moment of g,(1) is (rcferring to Fig. 2)

re L i
My = [ gadide = | [ gy() falt— £ ydi‘de
a [ ]

_ 0T s e rdedr

[} !

G

[ § e 0 (e ydxdr

00
_ I oany (AMy + ydr
-0

— 11’!1] + Asﬂfjlz (30)
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t’
Fig. 2. Integrated field transtormation.

The sth central moments of g,(7) are

€«

M, ‘ 00 1= MyL)'de

0

2L

U oge) fae=0y (1= Moy dede

00

= [ [ g fili—0) =My, — AM) didt
0o

= [ | &) fal)x+1 =M, — A.M,)" dxdr
[C ]

={ [ s a0 [S €5 — My (=AM, Y dxds 31
0 0 k=0

where n=23,...,

al
<= & (=)

and x=¢—{ (see Fig. 2).
In cqn. 31, for n=2,3,..., we have

My = My + AMs, (32)
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My, = My, + AMs, (33)
May = My + AMyy + 6M, A M, (34)
11’[52 = M5| -+ Agfwi;?_ + 10(/11121/1341’132 + M:HASIMZQJ (35)

Moz = Mgy + AMgy + 15(M3 A My + Mo AM) + 20M3 AM;,  (36)
The same results can be derived by using the Laplace transformation method.
The first three momenis

From egns. 30, 32 and 33, it can be shown that the first threc moments for the
whole column are

Jl{] -_ Z AA’[“ = ZASA”IIE (37)
MZ = Z Aﬂ"jzl' = Edsﬂllzi (38)
4M3 - Z Aﬂ’{},’ - ZA@M;:,,’ (39)

where the sums are for ail column length intervals and 4 is the generally used symbol
for increments, i.e.,

Alwni' = ‘Mni - A/Inli*l] (40)

This illustrates that the first original, the second central and the third central
moments are additive along the column length. It is concluded that, for homogeneous
conditions along the column length, the moments M,, M, and M, are directly
proportional to the column length L. This has been confirmed by the results of
Grubner [11], Grushka {9] and Chen and Peng [10].

Similarly, the first three moments for the whole system can be shown ta be the
sums of the appropriate order of moments created by the column itself and that caused
by the extra-column devices, that is, the {irst threc moments are additive for cvery part
the component passing through. In the following. we mainly discuss the moments
rclated to the column.

For the original moment, according to egn. 37,

iR 11. d:
ik =M= limY AM;=[ dr=|
Az~0 i o o Ry

(41)

This is anly a formal expression, In practice, eqn. 15 is used for calculations,
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For the second central moment, for isothermal processes it can be theoretically
cxpressed as

MU =S Fypy (k) 77 (D, (WPL (42)
pd

where ¥ denotes the summation for all pairs of p and ¢ and
P4

Dy(v) = Dy (T/To0)" 77 Po/P = Dyp Po/P = Dy jvfv (43)

in which Ty is an arbitrary temperature corresponding to the constant Dg.
The appropriate local expression for M, (with v and L changed into v and Az) is

AM,, = ¥ Fop, (k)" D0 Az (44)
rg

According to eqn. 32, when 4z—0, this leads to

d.tMg = [lim 'AM.’.: = lim AstZZ

Az—=0 z—0
= Y Fap, (v? [D,(v))4dz (43)
pq

Hence the second central moment (observed) for TPGC is

i
Mg = 3. | Fapg (v P[Dy(v)]dz
pg 0

= Z jR Fapg (k)Vl LD, +k)d1‘ (46)
pg 0

where v is expressed as in cgn. 21,

According to eqn. 46, for isathermal processes (f.e., the special temperature
programme with r=10), we obtain the expression for the experimentally observed
sccond central moment, viz.,

i EES = Z Fqu (k)i—quDgT L Pp—q (47)

rq
where ¢, _, is the pressure calibration factor, which is defined as
L
oy = (ML) | vThdz (48)
0
with
po = | (49)

o =1 (30)
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Lo, of=1 9 [(PyP)" — 1] (PP — 1
=5 P = i — l (51)
2 at—1 B [(P/P,) 1]
72_,3.rx5—1 -
03 = 3 J Otz—l ( )
I, a1
— - 53
Pa 3 J 1 (53)
2 4 W/ BN an+2 _ 1 54
=y -1 (54)
Similarly, for the third central moment, if the theoretical expression is
A’PBhrE = Z F3Pli (k) v [Dy(ﬁ)]ql‘ (55)
Pq
then the third central moment (observed) for TPGC is
SR
Mag = | Fap K) v 72 [D, WP +k) di (56)
rg 0
The cxpression for the observed third central moment is
MP =Y Fap ()V P [ DY Lo,y (57

pq

As an example, we take the theoretical expressions for the second and third
central moments in ref. 9, i.e. (note: for normal conditions 2D, /v << L),

MPE = (2673 D, () (1 +k)? + J kAL (58)
M3 = (12073 [D, (P (1 +k)® + Jy 773D, (Pk(L+k)+J5k/7IL (59)

where J,, J, and J; are constants related to the parameters of the column.
Under these conditions,

t
Mag = [ 12071 Dy (L HR)y + 7y kj(L+ KON (60)
O

MY = [25 7 jD,r (1+k) 02 + Jik/T oL {61)

and

Mg =[] 125272 DL (L+k) v + Jy V25D, kv + J3 k(1 + k)dr (62)

1]
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MY = (12777 D4 (14 k) @3 + Jo v 2 jDur k(LK) @2 + J3k/VIL  (63)
In practice, the moments may be regressed to isothcrmal data as

My, = Ay + Bat, + Caoff (64)

M, = Ay + Bit, + Csi2 + Dyid (65)

where t, = 1y (1 +k). Additionally, if the decompression effects of the carrier gas are
neglected, then we have approximately

L H
Max = (L) | Madz = | (Ma/t) dt (66)
Q Lt}
and

IA 1
Mag = (/L) [ My dz = | (My/n) dt (67)
[4] 0

The fourth and fifth central mtoments
For the fourth central moment, according to eqn. 34 we can wrile

My = A My

My, = M41 + AsM42 + GA’{:ZIAS‘MZE
Moy = Myx + AMa; + 6M,4M 35
Moy = Mys + A My + 6M34,M2y

Moy = My gy + AMay oy + My A Mo,y
My = My + A My + 6My5 (A0,

Adding these equdtlons we Ob[dll’l

Z AMy; + 6 Z ('Z AM ) AM 54, (68)

i= i=1 k=1

Slmlldrly, for the fifth central moment it can be shown thal (referring Lo egn. 33),
i-1

Ms; = Z AMs; + 10 Z (M2 AMigayy, + Map AMagiy)]

j=t i= .
i J
= E A MSJ + 10 Z Z ASAMZR) AS‘M3U*“
j= l i= k 1
-+ (Z AM 3) AM 354 1)) (69)
k=1

Referring Lo eqns. 68 and 69, theoretical expressions for the fourth and fifth central
moments may reasonably be written as

My = Fa [k7.Dy (D L + Fap [k,5.D,(7)] L? (70)

w1 he

Il

FsylkvD, M L + Fs; k,7.D (M} L2 {(71)
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Appropriate local expressions can then be written as

AM,, = Fylkv.D)dz + Folkv,D(v)2z4z (72)
and
A M5, = F5i[kv,D(0)]dz + Falk,v.D(v)]2z4z (73)
According to eqns. 68 and 69, the moments for TPGC will be
L I
Myp = j Foglkv.D(0W]dz + | Fyolk,v,D(v))2zdz
0 0
L z
+ 6 { Fg[k’,v’,[)g(v’)]d:’} Frylke v, Dy(w)]dz (74)
0 0
and

L L
Msg = | Falkv.Dywldz + | Fsalk,v.Dy(v)2zdz
1] 0
L z
+ 10 [ {f Flk'v.D, "} Pk, D,(0)]dz
[ ¢

I z
+ 10§ ) FK.Y.D N} Folkv. D (n)]dz (75)
4] 0

where &' = k(z"), v/ = w(z"), and
Folkv,Dy(v)] = 3. Fapy (K)v77[D,(v)]*
g

Filk v D)} = ¥ Fapy (k)r™7[D, (0]
4

PLATE HEIGHT AND PEAK VARIANCE

Fundamental aspects of plate height
For arbitrary chromatographic processes (here we still use subscripts R). the
plate height [or the whole column is delined as

LM,, Li LN? 13
H, — ——2L _ =" _ 7 s 76
UM T 4\ L (76)
Similarly, the local plate height should be defined as
H, o= fim 27AMar _ dedMy g, de (77)

) Az =0 (Aﬁﬂfl 2)2 (d‘Ml )2 dz
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which can also be written as

. RB2ALE . Ag?
H. = lIim —=% = lim

50 z az 0 Az

(78)

According to the additivity of the second central moment along the column
length, the ohserved plate height Hy and the local plate height A, arc related by the
following expression:

LW Lt H,
[ dr? == :

HR - - - j
2 2 2.2
IR (0) !R 0 R=v

“ds (79)

For isothermal chromatography, a similar expression was derived by Giddings [6].
In TPGC (or general processes), it is not correct to define the local plate height as
[1,6-8]

2 2
g9 o 47 (80)

) _d; Az—=0 AZ
because, 4l any position z, ¢ = Rvr, where 0 = a(z2), 1 = 1(2), Rv = R(z)¥{(z) and

do? dr? . d(R*vD)
d- e + 7 5

(81)

in TPGC, d(R*1?)/dz # 0, and hence da® # R*v*dr?/dz. Only when the system is
under isothermal conditions and the decompression cffects of the carrier gas are
neglected are the two definitions in eqns. 77 and 80 equivalent to each other.

Since A, in eqn. 77 and H, (= Hyg for £ = constant in eqn. 76) have the same
form of definitions (only for different column lengths), an expression for I7, can then
be deduced from that for H, just as that for AM,, in egqn. 44 and MY in egn. 42.
However, the expression for A in egn. 80 cannot be deduced from that for H,; because
of their different definitions they are only related in form by the following relationship
[1.7,8], which cannot be used for practical calculations:

L L
Hp = 55| Hud:z (82)

- 2
1L Rvi "o

It should be made clear that ¢? discussed above is different from &2 in the
gquation

Hp =Y ¢?/L (83)
j

where o/ is the variance created by independent dispersion processes (ordinary

diffusion, eddy diffussion and local non-equilibrium, etc.) of the whole column.
However, ¢ discussed abave is the variance for different length intervals, and cach
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involves the effects created by all independent dispersion processes, so certainly they
are not independent of each other, that is,

of = ). o} (84)
i

According to eqn. 76, eqn. 83 is valid only for isothermal processes in which the
decompression effects are neglected.

Eqn. 79 is a fundamental equation, that is suitable lor both TPGC and
isothermal processes. This equation is discussed below.

In isothermal chromatography, the variance in distance at the column end is

L
67 = Riviti = [ (v/v)* Hdz
L 0 L
= h (P/Pn)2 H.dz = f [052 — (12 — Dz/L|H d= (85)
0 0

This result is the same as that derived by Giddings ef al. [19]. Under this condition, we
have

de?
dz

= [0 — (2 — 1)z/LIH. (86)

In TPGC, the variance in distance at the column cnd is

L H
2 _ R2,? . dg 87
gL LVyL ORZVZ (87)
which is equivalent to
do? . . H
o - Ry vi- Ript (88)

Obviously, only for isothermal processes and when the decompression effects ol the
carrier gas are neglected does

(89)

when H is equal to H7.

Caleulations of plate height and peak variance
A theoretical expression [or the plate height for the whole column can be wrillen
as

D7) L c

Y L DF 90
7 D Y (40)

H"™ = 4 | B
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The local plate height, H_, will be (¥ — v in eqn. 90)

i .
Ho—A+B 10 ¢
v Dyr

+ Dv on

The observed plate height in TPGC can then be calculated by eqn. 79.
The observed plate height under appropriate isothermal conditions can be
derived as

HO™ = (A + B

]_[;’ ) ¢, + D7 92)
S gT

J lzy"' + C
v

which was also derived by Giddings er al. {19].
The appropriate cxpressions for peak variance are as follows:

M% rH‘:'hc L [‘I:. he

My = S o (93)
(L) L Hz [ Hz

Mz = | dM dz = 224 (94)
o) 0 o Rv
L HBI:S

M3 = R22 (95)

The above illustrates that discussions based on p]ate height and peak variance
are equivalent for calculations,

As an example, for a capillary, we outline the procedurcs for the calculation of
plate height and peak variance in TPGC. Under these conditions, eqn. 90 becomes the
Golay equation. Substituting

4=0
BD, = B.T"7*
C N ARl

Dy © (1+k)F TV
k
(1+k)*

D =2D -

into eqn. 92, and regressing to more than three different isothermal data, the regression
coefficients B;, C; and D, can be determined. Substituting them into cgns. 91, 79 and
94, the plate height and peak variance in TPGC can then be calculated.

The plate height and peak variance can also be calculated based on other
formulations for H(7'v); for cxample, the deWet and Pretorius [20] formulation may
be used lor such a purpose.
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DISCUSSION

For the Van Deemter equation, some contradictions occur between theory and
experiment. For example, experimentally the term A4 in H may be negative [21,22], and
H—v plot as different curves for columns of different length [23]. The reasons may be as
follows. W3 is used to replace M, and peaks are assumed to be symmetrical; pressure
decompression cffcets are not considered, especially for long columns; extra-column
effects are neglected: the systems are not homogeneous; the systems are not linear; and
the relationships between 17 and other factors (v.k,L.D,, etc.) are only approximately
correcl.

In practice, cxtra-column cllects generally exist and further it is difficult to
determine higher order moments correctly [12-15], so these factors must be considered
during confirmation of the theory just developed.

From the above consideralions, in TPGC retention time can be calculated by
eqn. 13 and peak vanance by eqn. 94, 46 or 66. The third central moment can be
calculated by eqn. 56 or 67. Plate height and higher order moments can also be
calculated by appropriate expressions just developed. The trace for the moving zone
position at any moment in time is given by eqn. 20. From these, optimization
procedures can then be carried out for TPGC, that is, the optimumn initial temperaturc
and heating rate for any temperature programme under the conditions of a given
sample and a given column can be predicled according to isothermal data.
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