
Jo~nal of Chmmaw~aphy, 521 (1990) 71 87 
N ~  Sden~ PuNNhe~ B.V., A m ~ d a m  

CHROM. 22 630 

Theory of temperature-programmed gas chromatography 

The m~hod of mome~ an~y~s 

JIAN YING ZHANGK GUANG MIN WANG and RONG QIAN 

~ G ~ ,  DaHan N s ~ e  ~ C h e m ~  Physks, C h ~ e  Aca&my ~ ~#n~s ,  Da#an (Ch~a) 
( ~ t  ~ i ~ d  D~emb~  28~, 198~ ~ d  manu~fi~  ~ c ~ d  J u ~  l~, 199~ 

ABSTRACT 

For mmperature-programmed gas chromatograph~ it is shown th~ ~e  first oriNnM, tke second and 
• e ~ird cen~al momen~ of a mo~ng zone am ad~five Mong M1 pa~s of the compone~ pa~ing through 
~ a finear ws~m. Trace expres~ons for zon~ mo~ng along the column and expr~dons ~ r  ~e  c a ~ M ~ n  
of the fi~t Nine moments ( r ~ e ~ n  fim< peak variance and third cen~al moment mNmd m peak skew) of 
peaks according to i s o ~ m N  d~a are derived. It ~ Mso shown ~at  ~e  defiNfion of local pN~ h~ght and 
mhmd equations ~ r  peak variance in Ne fimramm are not correck ReasonaNe defiNfions of local r a m  
height and rdamd e q u ~ n s  are then developed appropri~ely. 

INTRODUCTION 

The theory of ~mperature-ptogrammed gas chromatography (TPGC) was 
devdoped by several worke~ [1 5] and equations for the retention time and peak 
variance were derived and optim~ation procedures devdoped. However, in the 
fi~ratu~, pace expres~ons for componen~ mo~ng along the column ~ngth with time 
have not been congdered in detail. Also, the third central moment, wh~h reflects the 
skew of peaks, and higher order moments have not pre~ouMy been studied. 
AdNtionMl~ the defiNtion of local pla~ height and rela~d equations for peak 
variance in the fi~ratu~ [1,6 8] are not correct, as the actual peak variance in TPGC 
could not be calculated u~ng these equations with isothermM data. 

In the present ~eatment~ equations for the retention time and traces of 
components mo~ng along the column length are derived. ReasonaNe definitions of 
local plate height and rdated equations for the c a ~ a t i o n s  of peak variance in TPGC 
are then devdoped. 

In this pape~ a new mmho~ moment a n M y ~  ~ devdoped for TPGC, in which 
the rmention time, peak variance and h~her order moments are dealt with by 
a common, general, strict and ~mple method. By ufing thN m~hod, equations for the 
ca~Mation of Nfferent order of moments, ~ d u ~ n g  r~ention time, peak variance and 
third central moment, in TPGC using NothermM data are developed. DecompmsNon 
effects of the carrier gas are taken into account. 

0021-9673/90,/$03.50 ~ 1990 Else~er Sdence Pubfishers B.V. 



72 J. Y. ZHANG, G. M. WANG. R. QIAN 

RETENTION TIME AND TRACE 

In this t reatmenk only sysmms which satisfy the following assumptions are 
dNcussed: columns are homogeneous;  columns, or more  generM~ sy~ems,  am hnea~ 
and cartier gas pressures at the c ~ u m n  inl~ and cMumn outlet remain constant  during 
a n M y ~  

Con~de t ing  a componenk  the position of  its zone centre at time t is z = ~ t )  and 
the velocity of  the zone centre is 

d z / d t  = R v  = v / ( l + k )  (1) 

where k = k ( t )  is the capacity ~ c t o r  and v is the local velocity of  the carrier gas. 
D a v y ' s  Law is e x p r ~ d  as 

v = -(~M~& (2) 

where K and q are the permeability and viscoMty, respectivdy, of  the carrier gas and 
P ~ the locM pressure of  the carrier gas. As the column is homogeneouK at any moment  
there is no temperature gradient along the column length, and we can write 

D v = Ply  i = Povo = fi~ (3) 

where Pi and Po are the carrier gas pressure at column inlet and column outlet, 
respectively and v~ and vo are the corresponding cartier gas velodfies. P N the d i~ance  
average of  P, i.e., 

L 

P : (~ P d z ) / L  : Po~  (4) 
0 

where 

3 (~2_ 1) 

j = 2" .X3  - {  l) 
(5) 

and 

~ = P i / P  o (6) 

are constants.  
F rom eqns. 2 and 3, we have 

: ~ _ (p/po) ~ ~ _ (vdv) ~ 
_ 

- -  

L ~ 2 _  I ~ 2 _  1 
(7) 

and the time average of  v with time is given by 

to 1 y'I ~'d! = %to ~,~ dz = -to ~ (~) 
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where 

, o =  _- 

Noting that ~ in eqn. 3 can be wriRen as 

f = ~ / P  = j % 

73 

(9) 

(lO) 

then ~ is just ~ e  time av~age of v within the dead time to, and it is only related to the 
column ~ m p ~ u m ,  i.e., 

~ = L/to (11) 

On the other hand, the distance average of v along the column is 

~ = - -~ i  vdz (12) 

It can be derived that 

2 ~ 
~ - (~3) ~ + ~ )  

C o m ~ n g  eqns. 10 and 7 leads to 

v = ( ~ 4 )  
jx/~2 (~2_ 1)z/L 

This equation relates v (local valu~ and ~ at an appropriate column ~mpera tu~.  
By comNNng eqns. I and 14, the retention time ~ ~ TPGC (in this ~xt, subscripts 

R and r denote TPGC and isothermM processem respectiv~y) is obtained by the 
expres~on 

~ jtR dt  - 1 (15)  
o to (1 +k)  

This is con~smnt with the equation derived by Harris and Habgood [3]. 
The procedure for the cakMation of tR according to NothermN data can be 

outlined as follows. ExperimentaH~ the dead time can be wfitmn as 

to(T) = (A' + B'T)/(Pi-- Po) (16) 

Recalfing that Pi and Po are constant~ this reduces to 

to(T) = Ao + BoT (17) 
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The linear heating programme can be expressed as 

T = To + rt (18) 

where To and r are the initial temperature and the heating rate, respectivdy. It is wall 
known that 

Ink = Co + Do/T (19) 

If the constants Ao, Bo, Co and Doabove are d~ermined by mgres~on to several 
(morn than two) NothermM data, then Dora eqns. 17, 18, 19 and 15, for any values of To 
and r, the retention time t~ of each component with ~mperature programm~g can be 
cMcMated immediatdy. 

The trace e x p r e ~ n  in TPGC can be obtNned by comNNng eqn> 1 and 14, Le., 

~ O / L - ~  2 7~ 1 72 1 1 (~3 ~3 L_lf I ~ f k  dr) 2/3 (20) 

Eqn. 14 is then rewfi~en as 

v(O = ~ ( ~  3 ~3 L -- l f ~ o l  ~ k ' d t )  -1/3 (21) 

Similarly to the cakulation of t~, the pofifion of the zone centre and its 
velocity (Rv) at any time t can be ca~ulated by eqns. 20 and 21. 

As a ~ m pk  example, in Fig. 1 we give the trace t~r isotherm~ processes. The 
trace expres~on is obtained according to eqn. 20 as 

As in Fig. l, actual traces for Nothermal processes always fa~ between the two limiting 
curves, i.e., the curve z / L = ~ #  (a-~l) and the curve z/L = 1 - (1  ~t~) ~/~ (a-~v). 

MOMENTS OF LINEAR SYSTEMS 

It is well known ~ momems Nay an impo~am m ~  in c ~ o m ~ o ~ a p h y  ~ 15], 
as Hey a ~  ~recfly mlamd m ~ o ~  of p m ~ M  impo~ance, e.g., Mo, p ~ k  a~a;  M~, 
peak average retention time ( ~  ~ ;  Mz, peak variance (=  r~); M~, peak ~ y m m ~  
(skew = M~/M2~/z); M4, peak f l~mNng ~xc~s  = M~/M~ -- 3); where M~ dehorns 
the fi~t ofiNnM O ~ M m ~  moment and Mz, M~ and M4 denote the second, third and 
~u r th  ~ n ~ M  moment, ~ e c t i v ~ y .  

Bas# relat~nsh~s.for momen~ 
The properties of moments are generally discussed as follows [16 18]. First we 

discuss the momen~ created by the column itsel~ 
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Fig. 1. T ~ s  of ~mpone~s 0~luding air ~ak) along ~e c~umn ~n~h ~r ~h~mal  pmc~s.  A~ual 
t~@s alwa~ ~11 b~w~n ~e ~o  ~ t i ~  ~ ~haded area), i .e. ,  curve 1, ~L = ~G ~ I )  and curve 
2,~L = 1 - ( 1 - ~ 3  ( ~ ) .  

The whole c~umn can be regarded as many succesfve sho~ ~ngths, AI~, A~, 
A~, era., and we confider the variation of the peak profiles along these c~umn 
in~rvaN. Suppose indi~duM responNng functions of the column ~ r v M s  are 
repre~nted bz~(O,fz(t),f3(t), etc., respectivd~ that is, ira sharp [Dirac 6(0 funcfio~ 
i~ection ~ performed at the ~ t  of ~ r v M s  A~ (i= 1,2,3,...), the profile at the outlet 
will be depicted by the co~espon~ng function J}(t). 

If the 6(~ function samNing proceeds at the inl~ of the whom column, the profile 
at the outlet of length inmrval A6 will be ~(t), where ~ ( 0  is the convOution 0 ~ ( ~ ,  
fz(t),f3(t), .... and.~(t), as the c~umn is a~um~d to be linear. In the following, we use 
A~M,i and M,i denoting the nth moment (n = 1 for ofiNnM momenL n > 1 for central 
momen0 corresponding to ~(O and g~(O, respectively, that is, 

AsMll = ~ ( O t d l  (23) 
0 

AsM., = S~f~(O(t--AsMl~)"dt (n=2,3  .... ) (24) 
0 

Mli = S ° ~(Otdt (25) 
0 

M.i = ~ gi(t)(t-Mli)"dt ~ = 2 , 3  .... ) (2~ 
0 
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In TPGC,.~(0 is a complex function related to the mmperatum of the int~val, 
becau~ the cNumn ~ m p ~ N u r e  is var~ng during dut ion and ~ffemnt  pa~s of a zone 
pass through the column interval ~ ~ f f e ~ n t  momenu  in time, and hence at Nffe~nt  
m m p ~ N u m ~  Howev~,  in pract~e, the time interval is very short when a peak is 
pas~ng through a very short 0nfi~tesimal) c~umn length inmrval, prodded that the 
c~umn effidency is not too low. For exam~e, if the plato n u m b ~  N = 
5.54 (t~/w~ = 5.54 x 10 ~, w~ = 1% t~. A~uming that c~umn ~ m p ~ u ~  increases 
by 100 K during the retention time t~, the range of mmperatum variation for the peak 
pas~ng through an ~fiNm~mM column length will be ca. 1 K. T h ~ e f o ~ ,  to a good 
appro~mafiom we assume that, during the process of a peak mo~ng through an 
~f iNm~mN c~umn length ~mrvM, the local mmp~atum mmMns at a certain value 
that is a p p r o ~ m N ~ y  equal to the mmperatu~ of the zone centre pas~ng through. 
Hence the column can be regarded as many succes~ve len~h intervaE in which each 
mmNns ~ an ~ o ~ m N  m m p ~ u r e  wNk  ~ e  zone p a s t s  ~rough.  The time grad~nt 
of mmp~mum is then changed into the space gradient of m m p ~ N u m  Mong the 
c~umn k n g ~ .  

For ~mN~iW, we fir~ con~der two ~tervals, Al~ and A~. For a sharp i~ection 
into the inlet of the cNumn, i.e., the inlet of the length interval Al~, the profile at the 
outlet of Al~ will be ~ ( 0  =~( t ) ,  and the profile ~ the outl~ of A~ will be gz(O, where 
g2(/) is the conv~utmn of g~(0 and./~(t): 

g2(t) = ~' g,(r)f:(t-r)dt' (27) 
0 

Similarly, the profile at the outlet oral3 will be g~(0, which is the convolution of g2(0 
and f3(0, etc. 

For the first length interval All, 

Ma~ = A~M~I (28) 

M,~ = A~M,~ (n=2,3 .... ) (29) 

The first original moment of g2(0 is (referring to Fig. 2) 

M,2 = ~ g2(t)m~ = ~ S' gl(OA(t-Omm~ 
0 0 0 

S ~ ~ ~(OAe Ommr 
0 I' 

~ ~ g ~ ( O ~  (x+r)dxdr 
0 0 

0 

gl(Y) (A~Mlz + Y)dt' 

Mll + AsM12 (30) 
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/ 
/ 

/ 
/ 

t !  

~g. 2. l~egmmd fieM ~ a n s ~ r m ~ n .  

The nth central  m o m e m s  of g2(t) are 

M.2 = ~ g2(t) ( t -  M12)nd/ 
0 

~ t 

= ~ ~ g l ( O ~ ( t - r )  ( t - M ~  dCdt 
0 0 

= ~ g l ( O ~ ( t - - r )  ( t - - M ~  -- A~M~z~ dmt' 
0 t '  

= ~ '  g 1 ( ~ A ~ + t ' - M 1 1  -- AsM12~ d x d /  
o o 

=i f 
0 0 

where n = 2,3,... ,  

n! ~ -  
k~ ~-k)~  

and x = t - t '  (see Ng. ~ .  

In eqn. 31, ~ r  n = 2 , 3  ..... we have 

M ~  = M ~  + A~M~ 

g l ( f ) A ( x )  [ ~ ~ (t' - -  Mll ~ ~-AsM12~-~dff 
k = 0  

(31) 

( 3~  



M32 = M31 + Asm32 

M42 = M,~ + AsM42 + 6 M 2 ~ A s m 2 2  

M52 = M s l  + AsM52 + 10(M21Asm32 + M31AsM22)  

M62 = M61 + AsMrz + 15(M21A~M~ + M 4 1 A s M z 2  ) + 20M3~A~M32 
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(33) 

(34) 

(35) 

(36) 

The same r e s ~  can be derived by ufing the Laplace ~ansformation m~hod.  

The f irst  ~ tee  momen~ 
From eqns. 30, 32 and 33, it can be shown that the fi~t three moments for the 

whole column are 

m l  = E AM, ,  = Z A s m l i  (3~ 
i i 

M2 = ~ AM2, = ZA~Mzi (38) 
i i 

M~ = ~ A M 3 i  = Z A s m 3 i  ( 3 ~  
~ i 

w ~  ~ e  sums ~ e  ~ r  M1 cNumn l ~ h  i n ~ M s  and A is ~ e  ~ r ~ y  ~ ~mbol  
~ r  ~ e m e m ~  Le., 

A M,~ = M,i  - M , ,  - ~ I (40) 

This f l l u s ~  that the first ofi~nM, the second central and the third central 
momen~ are adNfive Mong lhe cMumn ~n~h .  It is concluded ~ ,  for homogeneous 
conNtions along the c~umn leng~, the momen~ M~, m2 and M3 am directly 
proportional to the cdumn  ~ n ~ h  L. This has been confirmed by the results of 
Grubner [11], Grushka [9] and Chen and Peng [1~. 

N m f l a ~  the fi~t ~ m e  moments for ~ e  whole sygem can be shown m be ~ e  
sums of the appropfime order o fmomen~  ~ e ~ e d  by the column i~d fan d  that caused 
by ~ e  e ~ r a ~ d u m n  de~ce~ t h~  is, the fi~t throe moments are ad~fi~e ~ r  ev~y pa~ 
the component pas~ng through. In the fo~owing, we mNnly discu~ the moments 
related to the column. 

For the ofiNnN momenk according to eqn. 37, 

tR = M,R = A~li om ~ A s M , ,  = i 2  ~ = S I R~v (41) 

This is only a formM expresfion. In practice, eqn. 15 is used for cMc~ations. 
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For the second central moment,  for isothermal processes ff can be theoretically 
expressed as 

Mtff  = ~ F2v~ (k) ~-P [Oq (~)]qL (42) 
Pq 

where ~ denotes the summation for all pairs of  p and q and 
pq 

D0(D = Do0 ( ~ T o o )  1"75 Po/P = Do~ Po/P = DorjU9 ~3) 

in which Too is an a rN~ a ry  mmperature cowesponding to the constant Doo. 
The appropf i a~  locM expression for M2 (with 9 and L changed into v and AD is 

A~M2~ = ~ F2p~ (k)v -p [D~v)] q Az (44) 
P~ 

According to eqn. 32, when Az-,'.O, this leads to 

dM2 = tim AM2~ = lim AsM2~ 
A z ~ O  A z ~ O  

= ~ F2m (k)v -p [D.(v)]qdz 
Pq 

Hence the second central moment  (observed) for TPGC is 

~5) 

L 

M~. = E I &~ ~ - " ~ a ~ m ~  
pq 0 

= 2 f f  ~ ~ v ~ - ~  ~ + ~ a ~  
p~ 0 

(46) 

where v is expressed as in eqn. 21. 
According to eqn. 46, for isothermal processes (Le., the spedal temperature 

programme with r=0) ,  we obtain the expresfion for the experimentally observed 
second central moment,  v~., 

M~  S = ~ F2pq (k)~-~ jqDJr L ~ _ ~  (47) 
Pq 

where ~v_q is the pressure cMibrafion f a~o~  which is defined as 

L 

~, = (T/L) ~ v-" dz (48) 
0 

~ t h  

~o = 1 ~ )  

~1 = 1 (50) 
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@2 = ~ ' ~ "  ~2~4--{ -- ~ ~ ~ -  31] ~ _  21] 2 -- 11 (51) 

@3 = ~ ' ~  ' ~5&2-- - I (5~ 

@4 = ~ " J~ " ~6~ --2__ { (53) 

2 ~+2 __ 1 
@" = n--+ 2 " ~ " ~2 _ 1 (54) 

Nmihrly, for the third cen~al moment, if the theoreficM expres~on is 

~ = ~ ~ ~) F -~ ~ ( ~ q L  

then the third central momem (observed) ~ r  TPGC is 

M3~ = ~ {R ~ (k) v 1-p [D~ ( ~ 1  +k)  at 
~ 0 

The ~ p ~ n  ~ r  the observed third cen~M moment is 

~ = ~ & ~  ( ~  ~ - ~  ~ L @~_~ 

(55) 

(56) 

(57) 

As an example, we take the theoretkM expresfions for the second and third 
cen~al moments in reK 9, Le. (nora: for normM conditions 2Do/v << L), 

Mt~ = ~ - 3  Do (~ (l +k) 2 + J,k/~L (58) 

Mt~ = [12~ s [D o (f)]2 (1+k)  3 + J2 ~-3Do (~k(1 +k)+J3k/~L (59) 

where J1, J2 and J3 are constants related to the parameters of the column. 
Under these condifion~ 

t R 
MzR = ~ [2~-~jD0r (l+k)/v + J~ k/(l+k)]dt 

0 

M~ s = [2F 3]DOT ( l + k )  2 @2 3i- J l k / F  @x]L 

(60) 

(61) 

and 

M3R = ~R [12 f-2.j2 D~T (l+k)2/v 2 + J2 ~-[~D~T k/v + J3 k/(1 + k~dt (62) 
0 
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M ~  s = [129-5 j ' 2D~r  ( 1 - I - k )  3 ~ 3  -'[- J 2  ~ - 3 j D o T  k ( l + k ) ~ 2  + J 3 k / ~ L  ( 6 3 )  

In practice, the moments  may be regressed to isothermal data as 

Met = A2 + B2~ + C2~ (6~  

M3r = A3 + B3G + ~ + D3~ (65) 

where ~ = to (1 + k). Additionally, if the decompression effects of  the cartier gas are 
neg~cted, then we have approximately 

and 

M2~ = (I /L) ~L M2,dz = /~  (Mz/t,) dt (66) 
0 0 

M3~ = ( l / L )  ~z M3~ dz = i ~ (M3r/tr) dt (67) 
0 0 

The four~ and fifth cen~al momen~ 
For the fourth central momem,  according to eqn. 34 we can wt i~  

M41 = 
M 4  2 ~ 
M43 = 
M44 = 

~ 1) 
M4i = 

A ~  
M41 + AsM42 + 6M2xAsM22 
M42 + AsM43 + 6M2~sM23 
M~3 + A~M~ + 6Mz3AsM24 

-- M4.  2) -~- AsM4(i ~) + 6M2(i-2)AsM20-~) 
M4(i-1) + AsM4i + 6M2(i t)AsM2i 

A d ~ n g  these ~ u ~ o n s ,  we obtain 
i i ~ j 

M4i = 2 AsM4j + 6 Z ( ~ AsM20 A~M20+~) 
j = l  j - 1  k = l  

(68) 

~ h ~ ,  ~ r  the fi~h ce~ra l  moment  R can be ~ o w n  ~ a t  ~e~r f ing  ~ eqn. 35), 
i i - 1  

Ms~ = ~ A~Msi + 10 ~ [M~ AsM3o+~)+ M ~  AsM2o+I~ 
j=~ j=~ 

i i - 1  j 

= E AsM~j + 10 Z ~ Z  AsM2~)A~M30+~) 
~=~ j=l ~=1 J 

+ ( Z A~M30 A~M2~+~3 (69) 
k = l  

Re~rf ing to eqns. 68 and 69, theoretical expres~ons ~ r  the ~ u r t h  and fifth central 
momems  may reasona~y  be wfi~en as 

Mt2; = & ,  ~.~,D. ( ~  L + &2 ~ , ~ D . ( ~  L ~ (70) 

M ~  = ~ i  ~ , ~ , ~  ( ~  L + R 2  ~ ( ~  L 2 (71) 
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Appropfiam locM expres~ons can then be wfi~en as 

A~M~: = ~ , a ~ ( ~ A ~  + ~ , ~ ( ~ A z  (72) 

and 

A~Ms~ = ~ , ~ D o ( ~ A z  + ~ , ~ D o ( ~ 2 z A z  (73) 

According to eqns. 68 and 69, the momems for TPGC will be 

L L 

M,n = 5 F 4 1 ~ , F , O a ( u ) ] d z  + 5 f 4 2 ~ , ~ D o ( F ) ] R z d z  
o o 

(74) 

and 

L L 

MsR = ~ F 5 1 ~ , ~ D g ( v ) ] d z  + ~ F 5 2 ~ , ~ D g ( P ) ] 2 z d z  
0 0 

+ 10 ~ {~ F~[k',¢,Do(v')ldz' } F3~,LDo(v)ldz 
0 0 
L z 

+ 10~ {~ F3[k',g,Do(v')ldz' } Fz~,v,Do(v)ldz 
0 o 

(75) 

where k' = k(z'), v' = v(z'), and 

& ~ , v ~  = ~ &~ ~ - ~ ( ~ "  

~ , v , ~ ( ~  = ~ ~ ~ - ~ ( ~  

PLATE HEIGHT A N D  PEAK V A R I A N C E  

Fundamental aa~ec~ qf pNw he@ht 
For arbi~ary chromatograph~ processes (here we still use subscripts R), the 

plate height for the whole cMumn is defined as 

HR -- LM2M~L L - Lzt~ ~ - I tS )  2 z~2 L (76) 

Sim~afl> the local pla~ hdght should be defined as 

H: = az~]i o m A~sM2(d 2 - ~M~)dz 2 dM2 
d~ 2 

- R 2v  2"  (77) 
dz 
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which can also be wfi~en as 

R2v2 A~r~ A~a~ 
H= = lim - l i m -  (78) 

az~O Az Az~O Az 

Accor~ng to the adOt i~f f  of the second central momem along the cMumn 
~ n ~ h ,  the observed Nam bright H~ and the local plato hdght  H~ are r d a ~ d  by the 
~ l ~ w ~ g  express~m 

H~ = ~ ~o1~ dr2 = ~ ~i ~2v2H~ d z  (79) 

For isothermal chromatography, a ~mflar expres~on was derived by Giddings [6]. 
In TPGC (or general processe~, it is not correct to define the local plate hdght  as 

[1,6-8] 

d6 2 Ag 2 
H ' ~ -  - h m -  (80) 

dz A~O Az 

because, at any po~tion z, a = Rw,  where 6 = 6(~, ~ = r(z), Rv = R(D~D and 

da2dz - R2v 2 " dZ2~z z + r 2" d(R2V2)dz (81) 

in TPGC, d(R2vZ~dz ~ O, and hence da 2 ¢ RZvZdra/dm Only when the system is 
under isothermal conditions and the decompresfion effects of the carrier gas are 
neglected are the two definitions in eqns. 77 and 80 equivalent to each other. 

Since H~ in eqn. 77 and H~ (=  H~ for k = constant in eqn. 76) have the same 
form of definitions (only for different column ~ngths), an expresfion for H~ can then 
be deduced from that for H~ just as that for A~M2~ in eqn. 44 and M ~  in eqn. 42. 
However, the expresfion for H'~ in eqn. 80 cannot be deduced from that for H~; because 
ofthNr different definitions they are only related in form by the following relationship 
[1,7,8], which cannot be used for practical calculations: 

L L 
HR - t~R~v~ - fo H'zdz (82) 

It shoed  be made dear  that 6 2 d~cussed above is different ~om a,2 in the 
equation 

HR = Z a~/L (83) 
J 

where 6) 2 is the variance created by independent disperfion processes (ordinary 
diffu~on, eddy diffussion and local non-equifibrium, ~c.) of the who~ column. 
However, 6~ discussed above is the variance for different length intervM~ and each 
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involves the effects created by all independent disper~on processes, so ce~ainly they 
are not independent of  each other, that is, 

= Y ( 8 4 )  
J 

AccorNng to eqn. 76, eqn. 83 is valid o n ~  for isoth~mM processes in wh~h the 
decompmsfion effects are neNecmd. 

Eqn. 79 is a fundamental equation, that is suRable for both TPGC and 
i so th~mN processes. This equ~ion  is discussed bdow. 

In NothermN ch romNograph~  the variance in N~ance  at the c o ~ m n  end is 

L 

~ = R~,~r~ = ~ ( ~  H~dz 
0 

L L 

= ~ (P/Po): H~dz = ~ ~ - ( ~  - 1)z/L]H~dz 
0 0 

(85) 

This result is the same as that derived by Giddings et aL [19]. Under this condition, we 
have 

d ~  2 
_ ~ 2  _ ~ 2  _ 1 ) U Q ~  ( 8 6 )  

dz 

In TPGC,  the variance in di~ance at the c ~ u m n  end is 

a~ = R~v~ ~i ~Sv2H~ " dz (87) 

which is ~ v ~ e m  to 

da 2 H.  
- ( 8 8 )  

dz 

O b ~ o u ~  only for Notherm~ processes and when the decompres~on effects of  the 
carrier gas are neglected does 

d ~  2 
- H z  ( 8 9 )  

dz 

when H: is equal to H':. 

Ca~u~t~ns ~ p ~  he~ht and peak var~nce 
A ~ e o r ~ c a l  expression for the plato h~ght  ~ r  the whole column can be wntmn 

as  

~ e  = A + B '  -D°(~ + C" __9 + D9 (90) 
~ ~ ( ~  
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The local pla~ h~ght, H~, will be (F ~ r in eqn. 90) 

H~ = A + B J D ° r  + C -~ + Dv (91) 
~ jDor 

The observed N~e h~ght in TPGC can then be cMcM~ed by eqn. 79. 
The observed plato hNght under appropriate i ~ m N  conditions can be 

derived as 

H ~  = (A + BJ--D°r~ + C ' ~ ) ~  + D~ (9~ 

which was Nso derived by Giddings et aL [1~. 
The appropriate expresfions for peak variance are as follows: 

~t~,N "~ ~ N"° 
M'?~ = - - L  - ~:v~: 03) 

M2~ = ~o)~)dM~ = ~ i ~ S v  ~ ' dz  = ~ d t  (9~ 

L /~bs 
M~b~ ~ -  R2~2 (95) 

The above ~lustrates that ~scu~ions based on plato hNght and peak variance 
are eq~va~nt for cMculation~ 

As an examp~, for a capi~ary, we ou~ine the procedures for the ca~uhtion of 
plato h~ght and peak variance in TPGC. Under these conditions, eqn. 90 becomes the 
Golay equation. Substituting 

A = 0  

B ~ r  = N~.75 

C l + 6 k + l l k  z 
- -  ~ .  

~ r  (1 +k) z 

k 
D = ~ " (1--+k)2 

1 
T 1.75 

into eqn. 92, and regres~ng to more than three different isothermM data, the regression 
coeffidenU Be, Cc and Dc can be determined. Substituting them into eqns. 91, 79 and 
94, the plate hNght and peak variance in TPGC can then be cMcula~d. 

The pla~ hNght and peak variance can also be cMculated based on other 
form~afions for H(T,O; for exampl~ the deWet and Pretofius ~ formulation may 
be used for such a purpose. 
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D ~ C U S ~ O N  

For the Van Deemmr equation, some contraNcfions occur b~ween theory and 
experiment. For example, experimentally the ~rm A in H may be negative ~ 1,2~, and 
H v  Not  as ~fferent curves for cdumns  of dill?rant ~ngth ~3]. The masons may be as 
follows. W~ is used to replace M2 and peaks are assumed to be symmmrica~ pressure 
decompresfion effects me not confidered, espedM~ for long columns; extra-cNumn 
effects am neNecmd; the sysmms are not homogeneoum the sysmms are not finean and 
the relationships b~ween H and other famo~ (v,k,L,Do, era.) are oNy appro~matdy 
correct. 

In practice, ex~amMumn effects generaRy exist and fu~her it is difficult to 
determine higher order momen~ correctly [12-15], so these f a ~ o ~  must be con~dered 
during confirmation of the theory ju~  developed. 

From the above considerations, in TPGC re~ntion time can be caD~amd by 
eqn. 15 and peak variance by eqn. 94, 46 or 66. The third central moment can be 
cMc~ated by eqn. 56 or 67. Pla~ height and higher order momen~ can also be 
calculamd by appropriate expresfions just devdoped. The trace for the moving zone 
podfion at any moment in time is Nven by eqn. 20. From these, opfim~ation 
procedures can then be carried out for TPGC, that is, the optimum iNfiM mmperatum 
and heating ram for any mmperature programme under the conNtions of a Nven 
sample and a given column can be preNcmd according to NothermM data. 
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